High performance multilayer MoS2 transistors with scandium contacts.
نویسندگان
چکیده
While there has been growing interest in two-dimensional (2-D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancy due to the lack of a complete picture of their performance potential. The focus of this article is on contacts. We demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS(2) layers the excellent intrinsic properties of this 2-D material can be harvested. Using scandium contacts on 10-nm-thick exfoliated MoS(2) flakes that are covered by a 15 nm Al(2)O(3) film, high effective mobilities of 700 cm(2)/(V s) are achieved at room temperature. This breakthrough is largely attributed to the fact that we succeeded in eliminating contact resistance effects that limited the device performance in the past unrecognized. In fact, the apparent linear dependence of current on drain voltage had mislead researchers to believe that a truly Ohmic contact had already been achieved, a misconception that we also elucidate in the present article.
منابع مشابه
High-performance MoS2 transistors with low-resistance molybdenum contacts
Articles you may be interested in Separation of interlayer resistance in multilayer MoS2 field-effect transistors Appl. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl.
متن کاملSelective and localized laser-anneal effect for high-performance flexible multilayer MoS2 thin-film transistors
We report enhanced performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates with ultra‐short, pulsed‐laser annealed Ti/Au contacts without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible PEN substrate with low thermal bu...
متن کاملControllable Schottky Barriers between MoS2 and Permalloy
MoS2 is a layered two-dimensional material with strong spin-orbit coupling and long spin lifetime, which is promising for electronic and spintronic applications. However, because of its large band gap and small electron affinity, a considerable Schottky barrier exists between MoS2 and contact metal, hindering the further study of spin transport and spin injection in MoS2. Although substantial p...
متن کاملMoS₂ P-type transistors and diodes enabled by high work function MoOx contacts.
The development of low-resistance source/drain contacts to transition-metal dichalcogenides (TMDCs) is crucial for the realization of high-performance logic components. In particular, efficient hole contacts are required for the fabrication of p-type transistors with MoS2, a model TMDC. Previous studies have shown that the Fermi level of elemental metals is pinned close to the conduction band o...
متن کاملFabrication and electrical properties of MoS2 nanodisc-based back-gated field effect transistors
Two-dimensional (2D) molybdenum disulfide (MoS2) is an attractive alternative semiconductor material for next-generation low-power nanoelectronic applications, due to its special structure and large bandgap. Here, we report the fabrication of large-area MoS2 nanodiscs and their incorporation into back-gated field effect transistors (FETs) whose electrical properties we characterize. The MoS2 na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2013